Adjustment of Membership Functions, Generation and Reduction of Fuzzy Rule Base from Numerical Data
نویسندگان
چکیده
In this paper we introduce a new approach for adjustment of membership functions, generation, and reduction of fuzzy rule base from data in the same time. The proposed approach consists of five steps: First, generate fuzzy rules from data using Mendel & Wang Method introduced in [1]. Second, calculate the degree of similarity between rules. Third, measure the distance between the numerical values which induces similar rules. Four, if the distance is greater than base value then merge membership functions. Finally, regenerate rules from data with new fuzzy sets. This approach is applied to truck backer-upper control and Liver trauma diagnostic. A comparative study with a simple Mendel Wang method shows the advantages of the developed approach.
منابع مشابه
Improvement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملA recursive rule base adjustment algorithm for a fuzzy logic controller
This paper introduces a recursive rule base adjustment to enhance the performance of fuzzy logic controllers. Here the fuzzy controller is constructed on the basis of a decision table (DT), relying on membership functions and fuzzy rules that incorporate heuristic knowledge and operator experience. If the controller performance is not satisfactory, it has previously been suggested that the rule...
متن کاملThe generation of fuzzy sets and the~construction of~characterizing functions of~fuzzy data
Measurement results contain different kinds of uncertainty. Besides systematic errors andrandom errors individual measurement results are also subject to another type of uncertainty,so-called emph{fuzziness}. It turns out that special fuzzy subsets of the set of real numbers $RR$are useful to model fuzziness of measurement results. These fuzzy subsets $x^*$ are called emph{fuzzy numbers}. The m...
متن کاملReduction of fuzzy rule base via singular value decomposition
This paper introduces a singular value-based method for reducing a given fuzzy rule set. The method conducts singular value decomposition of the rule consequents and generates certain linear combinations of the original membership functions to form new ones for the reduced set. The present work characterizes membership functions by the conditions of sum normalization (SN), nonnegativeness (NN),...
متن کامل